ANALYSIS OF EBCOT DECODING ALGORITHM
AND ITS VLSI IMPLEMENTATION FOR JPEG 2000

Hong-Hui Chen, Chung-Jr Lian, Te-Hao Chang, and Liang-Gee Chen

DSP/IC Design Lab, Department of Electrical Engineering, and
Graduate Institute of Electronics Engineering, National Taiwan University
e-mail: { sernc, cjlian, thchang, lgchen } @video.ee.ntu.edu.tw

ABSTRACT

Embedded Block Coding with Optimized Truncation (EBCOT) is
the entropy coding algorithm adopted by the new still image com-
pression standard JPEG 2000. It is composed of a multi-pass
fractional bit-plane context scanning along with an arithmetic
coding procedure. GPP (general purpose processor) or DSP fails
to accelerate this kind of bit-level operation, which is proven to
occupy most of the computational time of the JPEG 2000 system.
In this paper, two new accelerating schemes are proposed and
applied to our prototyping design which turns out to be powerful
enough to fulfill the demand of computational requirement of the
most advanced digital still camera.

1. EBCOT DECODING ALGORITHM

EBCOT[1][2] decoding algorithm is one of the two key parts of
the JPEG 2000[3] decoder. These two key parts are the trans-
form part (inverse discrete wavelet transform) and entropy decod-
ing part {EBCOT decoding algorithm). Figure 1 shows the block
diagram of JPEG 2000 decoding system.

EBCOT

decoding = Dequantization

Inverse Post-
wavelet transform processing

Figure 1. Block diagram of JPEG 2000 decoding system

The goal of this paper is to conduct a full analysis of the EBCOT
decoding part and then presents a prototyping VLSI implementa-
tion of it. The EBCOT decoding algorithm is essentially a con-
text-based arithmetic decoding algorithm, like that used in
MPEG-4 shape coding, MPEGH4 texture coding, and JBIG/JBIG2
coding. This kind of algorithm is basically composed of two
basic blocks, which are context formation and arithmetic decoder.
The arithmetic decoder adopted in JPEG 2000 is the well-known
MQ-coder[3][{4] and we focus our discussion on the context for-
mation part. EBCOT decoding algorithm acquires its context
from the bit-plane scan with a stripe-by-stripe fashion and each
bit-plane contributes three scan passes. These three scan passes
are pass 1 (also called significant propagation pass), pass 2 (also
called magnitude refinement pass), and pass 3 (also called
clean-up pass). Figure 2 shows the basic bit-plane scan flow of
the context formation operation for a code block. Note a stripe is
formed by 4 rows of the bit samples within that bit-plane and
typically a code block used in JPEG 2000 system is 64x64. Each
bit sample is scanned/decoded at one of three passes. There are
state variables kept for each bit sample and these state variables

0-7803-7448-7/02/$17.00 ©2002 IEEE

For sach pass, the whole

Cimension equals to
coda block sixe (ex, st bit-plane is scaned once. |
MSH bit-plane Is scaned first.
M5B
kg e Ty AL
A Y

Transform
coefficlent
bit-depth

(magnitude;

' 1 column is composed % e R SR N R R
of 4 bt I ! ' péluimn b
Each bit sample is decoded

in one of the three pass | 1: o

k.

Figure 2. Bit-plane reconstruction scanning flow

Table 1. Criteria for determining the pass bit sample belongs to

.. Criteria description -~ - S

Any of the 8-connected neighborhood (Figure 3} ha

“Significant” state set and the bit sample itself has
not become significant. After scanned, the “Coded”
state will be set true.

Pass 1

Bit samples that have become significant at higher
bit-plane. After scanned, the “Coded” state will be
set true,

Pass 2

The bit samples that are not scanned at pass ! or
pass 2. That is, those samples with their “Coded”
states remain false. Afier pass 3, all “Coded” states
should be set false.

Pass 3

(note : “become significant” means that the first time non-zero bit sample of the
coefficient’s magnitude is found and the “Significant” state which is initially set false
will be set true.}

decide which pass the bit sample should be scanned/decoded.
These state variables are “Significant”, “Coded”, “Refined”, and
“Sign”, and each state could be viewed as a one-bit flag. Table 1
lists the criteria for determining which pass a bit sample belongs to.
At pass 1, the “Zero coding” primitive is used to determine the
context of the bit sample according to the “Significant” states of
the 8-connected neighborhood. In Figure 3, the 8-connected
neighborhood may cross the stripe boundary. At pass 2, the con-
text for the bit-sample is decided via “Magnitude refine coding”
primitive which generates the context according to the “Signifi-
cant” states of the neighborhood and the “Refined” states of its
own. Pass 3 uses “Zero coding” primitive and also the
“Run-length coding” primitive, which ¢xams 4 bit samples {(a
column) together to see if all the bits have non-significant
neighborhood and none of them are scanned at pass 1 or pass 2.
If true, the run-length context is generated. However, if any of
the sample in that column is not zero, the position of this

Iv-329

Table 3 Condmons that resull in clock bubbles

Coding pass Congt:o
The cocHicient has become stgmﬁcant and the bit
Stripe sample should be decoded at pass 2.
The coefficient has not become significant yet,
Pass 1 but there is not any coefficient in its 8-connected
neighborhood becomes significant. So no sig-
Figure 3. 8-connected neighborhood nificant propagation for this coefficient and the
bit sample should be decoded at pass 3.
Table 2. JPEG 2000 run-time profile The coefficient has not become significant in the
Operation __|Runtime percéntape (%} [Renottnalized (%) | Pass2 |previous bit-plane, so the bit-sample should not
Context formation: 34.6 50.5 be decoded/refined at pass 2.
Arithmetic decoder’ 7.5 10.9 Pass 3 The bit-sample with its “Coded” states set true.
Inverse quantization 2.7 3.9
IDWT 23.8 34.7
Total 68.5 100

(Environmens: Windows 2000, 256M RAM, PIII 866, Microsoft Visual C++ 6.0
Target file : lena_97_L3.jp2 (encoded from 256x256 test image with 3-level DWT,
compression ration=2.4. Note some computation is eccupied by 10 or memory ma-
nipulation)

bit should be sent through specific context and the rest bits are
coded by “Zero coding” primitive. The sign of the coefficient is
decoded immediately after the coefficient becomes significant
using “Sign coding” primitive, which emits the context according
to the “Significant” and “Sign” states of the 8-connected
neighborhood. This sign decoding operation can happen at pass
1 or pass 3.

To sum up, all the coding primitives check states of the
neighborhood and the decoded bit sample itself with a way like
table looking-up method to determine the corresponding context
for arithmetic decoder. For a more detailed description or the
context tables used in JPEG 2000, one can refer to [3]. Finally, if
any decision is generated from the arithmetic decoder which is
provided with the context and bitstream of the decoding code
block, the value of the decision will then be converted to bits of
the magnitude or sign for the coefficient, or just a judgment for
“Run-length coding” all depending on the coding primitive used.
And these decisions will affect the state variables of the decoded
coefficient that may force the coefficient to be decoded at different
pass in the decoding procedure at the next bit-plane.

2. PROPOSED SKIPPING-BASED DECODING FLOW
AND SKIPFING PRIMITIVES

According to the JPEG 2000 VM software profile result as shown
in Table 2, the EBCOT decoding algorithm occupies most of the
computational time of the JPEG 2000 decoding system. Refer-
ring to our previous work [3), it is apparently that if the architec-
ture is not carefully designed, that is if we check all the bit sam-
ples at every location for each scan pass, clock bubbles will be
generated. We list several conditions that result in clock bubbles
in Table 3. Theoretically speaking, assume the bit-depth of the
coefficient magnitude is “Bdep”, a 3-pass scan algorithm for a
code block with size NxN will cost 3xNxNxBdep clocks to com-
plete the decoding procedure while the real decoded samples are N
xNxBdep. Hence, there are 2xNxNxBdep waste clocks and the
portion of extra clocks is so high as to 67 %. Our previous work
[5] introduces the idea of skipping scan method with two major
skipping primitives as Sample Skipping (S8) and Group
-of-column Skipping (GOCS) to reduce the clock bubbles. To
achieve these two skipping primitives, a proper memory arrange-
ment is also proposed. In this paper, we propose two other

Updatr growp

sair raabies

Ut Pact 3

‘ [
Updae

N o akip o,

¥

Figure. 4(b) Scan flow of pass 2

skipping primitives called Multiple Column Skipping (MCOLS)
and Pass Skipping (PxS). Latter it can be shown that these two
primitives can be implemented with a simple modification of the
memory organization and with a very little hardware cost. The
skipping ability or bubble reduction performance is even better
than our previous work [5]. Before the detailed analysis of each
skipping primitive, a complete skipping scan flow of each pass is
depicted in Figure 4. The following is the brief description for
cach skipping primitive.

2.1 Sample Skipping

SS primitive is applied to each columm, like the column

IV - 330

89110
XIXiX
Xxlo

x_ng
L

Groupl | Group2
1 1

O :need scamning sample ¢ : not need scanning sample

o|x[x|o]-
x| x|xix] -
XXX -
XIXIX{X] =
X|KI{XX]~
AXIX|X

|__Groupd |
| T

Figure 5. Skipping primitive illustrating example

numbered 1 shown in Figure 5. The bit samples need to be
scanned are the first and the fourth.” With a direct scan method
while scanning the second and the third sample, no valid context
will be generated because these two samples do not belong to this
scan pass and a total scan clock counts for this column is 4. If 53
is applied, the sample that contributes no valid context will be
skipped, and only 2 clocks are spent for the scan of column 1.

2.2 Group of Column Skipping

As shown in Figure 5, there may be several consecutive
columns that do not need to be scanned. Hence, if we pre-collect
the information about the skipping information for the group and
record it in memory, we can check the group skipping flag (1 bit
per group) first to skip the whole group. This primitive need an
additional memory to record all the group skipping flags.

2.3 Multiple Column Skipping

The problem of the GOCS is that it is not flexible enough.
Look at the group 2 within Figure 5. The GOCS will fail to skip
this group even that this group only has one bit sample to be
scanned. With a simple modification of the memory organization,
which is to enlarge the vision of the state variables, we can skip
multiple columns by checking more state variables. For example,
if the memory can output the state variables 4 columns per read
operation, then the information will be enough to determine
whether multiple columns can be skipped or not. If MCOLS
with a vision of state variables up to 4 columns is applied, the
group 1 can still be skipped (but no need of the GOCS flag from
memory) and group 2 will cost only | clock (assume SS is applied)
to complete the scan of the group while GOCS primitive fails and
only S8 works that will cost 4 clocks to complete the same scan
procedure,

2.4 Pass Skipping

Every time after pass 1 or pass 3 has completed its scan
procedure, there is a chance that all the “Significant” state vari-
ables of the whole coefficients have been set true. Then the fol-
lowing scan pass will all be the pass 2 only. The whole pass |
and pass 3 can just be skipped. Only | bit flag is needed to com-
plete this check., However, this situation almost never happens
because there always exists coefficient equal to zero and never
becomes significant and needs to be decoded at pass 1. As for pass
3, the “Significant” and “Coded” states can be used to decide
whether the whole pass 3 is skipped and this flag should be evalu-
ated at pass 2 scan procedure. Table 4 shows our evaluation of
the Pass Skipping primitive and it shows that under lossless

Table 4. Evaluation of Pass Sklppmg pnmmve
o :

{Lossless compresyion - {1
. Pass 3 sk1p Pass 3 skip
Test image | Total passes counts Total passes counts
Lena 301 7 124 0
Shuttle 352 17 124 0

(Test image: gray level, 256x256 with 2-level DWT, resuits in 16 code blocks)

Table 5. Evaluation of combmatlons of skipping primitives

A Tefin. | Lena | Shuttle | Shuftle
e wat - | lossless | CR= [Tosstess | GR=8
GOCS 4 951430 | 331353 | 1104643 | 329050

GOCS 8 958301 | 333849 11111638 331059

- GOCS_16 971629 339519 | 1123983 | 334193
S8+GOCS 4+PxS 481701 | 160635 | 556901 | 164172
SS+GOCS 8+PxS 483905 | 161106 | 560424 | 164555
S8+GOCS 16+PxS 486891 | 162186 | 563864 | 165153
MCOLS 4 T61568 § 278152 | 887071 | 272326

88 521360 j 175285 | 609467 | 179985
SS+MCOLS_4+PxS 441391 1137490 { 514905 | 142240
SS+MCOLS 44+GOCS 8+PxS i 436040 | 135106 | 509085 | 139653
SS+MCOLS_4+GOCS_16+PxS| 433999 | 134184 | 506763 | 138508
Ideal 378726 | 109524 | 448647 | 114653

(Mote: The postfix of GOCS means the number of columns grouped together and
that of MCOLS means the memory output vision of columns) (Unit: clock counts)

compression, many paSs 3 scanning operations can just be skipped
because they do not contribute any valid context.

Table 5 lists our evaluation of the different combinations of
the skipping primitives with the model written by C programming
language. The numbers are the total cycle counts needed to
complete performing the EBCOT decoding part of the test image.
The ideal cycle counts are equal to the total context counts based
on the assumption that arithmetic decoder can consume | context
per cycle and this is usually true for the sequential coding algo-
tithm like the arithmetic decoding algorithm. For applying a
single skipping primitive only, 85 owns the best ability to reduce
the clock bubbles, and the next are MCOLS and GOCS. For ap-
plying multiple skipping primitives, the 8§ + MCOLS + Px8
+ "long-term GOCS” performs best. The “long-term” phase
means the number of column grouped together must be larger than
the vision of the new memory organization for the MCOLS. We
only list MCOLS_4 because from the evaluation of GOCS, the
GOCS_4 performs best among all other grouping scheme. Tt is
worth noticing that PxS will only be useful for the lossless com-
pression for these two patterns according to the evaluation result
of Table 4.

3. VLSI IMPLEMENTATION AND
EXPERIMENTAL RESULT

From the evaluation result of Table 5, we select the combination,

SS+MCOLS_4, applied to our prototyping JPEG 2000 block de-

coder design. The reasons are listed below:

1. The SS+MCOLS_4 has already possessed a very good per-
formance.

2. If GOCS is applied, there must be an additional memory that
will increase the die size and the extra gain is small.

3. PxS is skipped because the decoder will normally decoding
the bistreams at the compression ratio about 5~15 or higher.
PxS tends to happen at compression ratio less than 3.

IvV-331

i Sv

Brs = rwcs
a
1

Figure 6. Proposed architecture (MCOLS+SS)

p .l Jl-l{
..,.....(Stripe 0
.

—~
w_w-a(Strips 1
Y _powrni]
s Litelots Stripe 2
.
P Stripe 3
s
. Stripe 4
_marn)|

Figure 7. State memory mapping for the bit-plane

The proposed architecture is depicted in Figure 6. Three state
variable memeories are used to accomplish the memory iteration as
propased by our previous weork [5] and memory IO capacity is
increased to 32 bits. The organization of the memory can be
illustrated with Figure 7. Every time when new state variables
must be read out, 8 state variable groups are outputted. Each
group is composed of 4 bits as “Significant”, “Sign”, “Refined”,
and “Coded” states. Hence, the [O bit-width must be 8x4=32 bits
for each state variable memory. These state variables are latched
into the register banks eb_bank0 - eb_bank3. In this prototyping
design, we only concentrate our context determining PEs (table
look-up mechanism for each position at eb_bank4 according to the
state variables of the 8-connected neighborhood) at eb_bank4 only.
That 1s, if the situation like group 2 of Figure 5 is encountered, the
eb_bank must first shift two columns and make the bit sample
which needs to be decoded be aligned at eb_bank4. The
shift-two-column operation introduces 1 clock bubble, so the per-
formance suffers from a little degradation. However, this simpli-
fication will reduce the hardware cost drastically and the per-
formance tums out to be still good enough to fulfill our specifica-
tion. The skipping detection circuit detects the amount of skip-
ping through MCOLS at column domain first, then through S8 at
sample domain within a column. It is inevitable that there are
invalid contexts and skipping circuit will notify the arithmetic
decoder if the context is valid or not. If the context is valid, the
arithmetic decoder will also output & valid decision, which turns to
affect the skipping amount of eb_bank and the next states of in-
tenal registers. After enough columns have been scanned, the
updating operation is triggered with the updating content accord-
ing to eb_bank4 — eb_bank7. The experimental result of this
prototyping design is shown in Table 6. In Table 6, the bubble
rate means the clock counts that contribute no valid context divide

Table 6. Experimental result with Verilog model

S . Spend- J: Bubble 1 Residue
Testimage fldealelock| ““nv 17 | rme

Lena 378726 435113 14.89% 35.29%

Shuitle 448647 316022 15.02% 35.79%

(Lossless compression, image size: 256x256, 3-level DWT)

by the ideal clock counts. The column titled “Residue” is the
clock counts spent divided by non-optimal direct 3-pass scan
which is the evaluating figure used in our previous work [5].
According to [5], the encoder design using SS and GOCS skipping
primitives together results in 2 residue rate about 40% while the
decoder design presented in this paper outperforms it about 5%
(from 40% to 35%). Our design is modeled by Verilog hardware
description language and synthesized with a 0.35 1z m cell library
for TSMC 1P4M process technology. The target working fre-
quency is 33MHz and total gate counts are about 22,000. As a
simple evaluation, we assume the bitstream is compressed with the
ratip equal to 5 {the compression ratio of finest quality in general
digital still image camera) and Mpix is the capable million pixel
counts of the input stream our design can deal with. From Equa-
tion (1) it can be calculated that our design owns the ability to
handle the image about 5.73 million pixels just in 1 second,

Mpix x Bit Depth x Residue Pass x Component
Working Frequency X Compression Ratio
Mpixx 9x(3x35.54%}x 3(RGB)
33(MHz) x5

= Time (1)

= I second, Mpix=15.73

{Average bit depth is 9, and 35.54% is the average value from Table 6)

4. CONCLUSION

Skipping based algorithm with all its useful skipping primitives is
an efficient scheme to reduce the scan bubble while applied to the
implementation of EBCOT coding algorithm which is a core en-
tropy coding algorithm adopted in JPEG 2000. In this paper, two
new skipping primitives MCOLS and PxS are introduced. A
prototyping architecture implemented with 85 and MCOLS skip-
ping primitives is proposed and the skipping ability is better than
previous work [5]. The proposed architecture could handle up to
5.73 million pixel color images in one second at 33MHz, thus can
fulfill the demand of decoding power of most advanced digital stifl
camera while JPEG 2000 is embedded as the image compression
kernel.

REFERENCES

[1] D. Taubman, “EBCOT: Embedded Block Coding with Opti-
mized Truncation,” ISO/IEC JTC1/SC29/WG!1 N1020R.

[21 D. Taubman, “High Performance Scalable Image Compres-
sion With EBCOT,” JEEE Trans. Image Processing, vol. 9,
Page(s): 1158 —117¢, Jul. 2000.

{3] JPEG 2000 Part I: Final Draft International Standard
{ISO/IEC FDIS15444-1, ISO/IEC JTC1/SC29/WG1 N1835,
Aug. 2000.

[41 M.J. Slattery and J.L. Mitchell, “The Qx-coder,” IBM Journal
of Research and Develapment, vol.42, No. 6. 1998.

[5] K.-F.Chen, C.-I. Lian, H.-H. Chen and L.-G. Chen, “Analy-
sis and Architecture Design of EBCOT for JPEG 2000,”
IEEE International Symposium on Circuits and Systems, vol.
2, Page(s): 765-768, 2001,

IV -332

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

